標題:

inequality

發問:

aa.jpg

 

此文章來自奇摩知識+如有不便請留言告知

Show that if p,q,r are positive integers satisfying (1/p)+(1/q)+(1/r)
最佳解答:

Obviously, p,q,r > 1 (1/p)+(1/q)+(1/r) obtains maximum when p,q and r are of the smallest possible values. However, they cannot be all 2 at the same time. So, when one of p,q and r is 2, the smallese possible value of the other two is 3. When one of them is 2 and one of them is 3: if the last one is 4, (1/2)+(1/3)+(1/4) = 13/12 > 1 5, (1/2)+(1/3)+(1/5) = 31/30 > 1 6, (1/2)+(1/3)+(1/4) = 1 7, (1/2)+(1/3)+(1/7) = 41/42< 1 For the last one > 7, the value of (1/p)+(1/q)+(1/r) < 41/42 Hence, 41/42 is the maximum possible value foe (1/p)+(1/q)+(1/r) if (1/p)+(1/q)+(1/r) < 1. i.e. (1/p)+(1/q)+(1/r) <= 41/42 (I'm an S.4 student only. I don't know the formal proof)

其他解答:

arrow
arrow
    文章標籤
    巴士 文章 奇摩 i.e.
    全站熱搜
    創作者介紹
    創作者 rlz87tm45t 的頭像
    rlz87tm45t

    rlz87tm45t的部落格

    rlz87tm45t 發表在 痞客邦 留言(0) 人氣()